Dynamical Behavior of Human α-Synuclein Studied by Quasielastic Neutron Scattering
نویسندگان
چکیده
α-synuclein (αSyn) is a protein consisting of 140 amino acid residues and is abundant in the presynaptic nerve terminals in the brain. Although its precise function is unknown, the filamentous aggregates (amyloid fibrils) of αSyn have been shown to be involved in the pathogenesis of Parkinson's disease, which is a progressive neurodegenerative disorder. To understand the pathogenesis mechanism of this disease, the mechanism of the amyloid fibril formation of αSyn must be elucidated. Purified αSyn from bacterial expression is monomeric but intrinsically disordered in solution and forms amyloid fibrils under various conditions. As a first step toward elucidating the mechanism of the fibril formation of αSyn, we investigated dynamical behavior of the purified αSyn in the monomeric state and the fibril state using quasielastic neutron scattering (QENS). We prepared the solution sample of 9.5 mg/ml purified αSyn, and that of 46 mg/ml αSyn in the fibril state, both at pD 7.4 in D2O. The QENS experiments on these samples were performed using the near-backscattering spectrometer, BL02 (DNA), at the Materials and Life Science Facility at the Japan Accelerator Research Complex, Japan. Analysis of the QENS spectra obtained shows that diffusive global motions are observed in the monomeric state but largely suppressed in the fibril state. However, the amplitude of the side chain motion is shown to be larger in the fibril state than in the monomeric state. This implies that significant solvent space exists within the fibrils, which is attributed to the αSyn molecules within the fibrils having a distribution of conformations. The larger amplitude of the side chain motion in the fibril state than in the monomeric state implies that the fibril state is entropically favorable.
منابع مشابه
Proton dynamics in oxides: insight into the mechanics of proton conduction from quasielastic neutron scattering.
This article is concerned with the use of quasielastic neutron scattering as a technique for investigation of the dynamical properties of proton conducting oxides. Currently, the main interest in these materials comes from their promise as electrolytes in future electrochemical devices and particularly through their use as electrolytes in next-generation, intermediate-temperature, fuel cells. H...
متن کاملDynamic behavior of hydration water in calcium-silicate-hydrate gel: a quasielastic neutron scattering spectroscopy investigation.
The translational dynamics of hydration water confined in calcium-silicate-hydrate (C-S-H) gel was studied by quasielastic neutron scattering spectroscopy in the temperature range from 280 to 230 K. The stretch exponent β, the self-diffusion constant D, the average translational relaxation time {τ}, and the temperature dependence of confinement radius α extracted from the elastic fraction of im...
متن کاملQuasielastic neutron scattering and relaxation processes in proteins: analytical and simulation-based models.
The present article gives an overview of analytical and simulation approaches to describe the relaxation dynamics of proteins. Particularly emphasised are recent developments of theoretical models, such as fractional Brownian dynamics. The latter connects dynamical events seen on the pico- to nanosecond time scale, accessible to quasielastic neutron scattering, and functional dynamics of protei...
متن کاملSEPARATION OF THE COHERENT AND INCOHERENT SCATTERING OF C2Cl6 BY POLARIZATION ANALYSIS
In neutron scattering by C2CI6 the incoherent contribution to the quasielastic linewidth gives information on the reorientational motion of the molecules by scattering on individual atoms. The coherent scattering contains in contrast also interference effects. With polarisation analysis it is possible to distinguish between coherent and spin incoherent scattering. If it is possible to modulate ...
متن کاملProton fluctuations and water diffusion in dextran chemical hydrogels studied by incoherent elastic and quasielastic neutron scattering.
Proton fluctuations reporting local motions of the glycosidic linkages of chemically crosslinked dextran hydrogels with well defined pore-size distributions are studied by static and dynamic neutron-scattering approaches. The dependence of the dynamic behaviour of water on the pore sizes is also discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016